Благоустройство         10.04.2024   

Простой прибор для проверки стабилитронов своими руками. Проверка высоковольтных стабилитронов

В связи с распространением дешевых малогабаритных цифровых вольтметров, появилась возможность изготовить простые приборы-пробники для контроля различных величин. Данный прибор позволяет измерить падние напряжения на переходах полупроводников при фиксированном токе. Контроль напряжения ведется по цифровому вольтметру, который и определяет точность результатов. Прибор состоит из трех частей, собственно вольтметра, источника тока и преобразователя напряжения. Источник тока собран по классической схеме на стабилизаторе LM317. Трехпозиционный переключатель с нейтральным средним положением и набор резисторов обеспечивают три значения тока: 1, 5 и 10 мА. Если требуется большая точность рабочего тока, к примеру что бы оценивать номиналы резисторов, то нужно подобрать номиналы резисторов. На схеме приведены расчетные данные, но если высокая точность не нужна, можно ставить резисторы из ближайшего ряда.

Схема принципиальная

Преобразователь собран на 555 таймере, и служит для повышения напряжения с 12 рабочих, да 32 максимальных для вольтметра. Подстройка выходного напряжения осуществляется подстроечным резистором.

Обсудить статью ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ

Давно снимал видео на тему тестера для стабилитронов, устройство довольно популярно и пользуется спросом среди радиолюбителей, поэтому решил написать эту статью.

В отличие от ранее указанного ролика, в этом проекте использованы готовые модули из Китая, что облегчает сборку.

Итак для начала о компонентах, забегая вперед скажу, что затрат всего на пару долларов, а все ссылки на покупку нужных компонентов будут в конце статьи.

Понадобиться нам повышающий DC-DC конвертор на базе микросхемы MT3608.

Плата позволяет получить выходное напряжение 28-30 Вольт, минимальное входное напряжение 2-2,5Вольт.

Вторая платка тоже из китая, это контроллер заряда для одной банки литий-ионного аккумулятора с защитой, построен на базе микросхемы TP4056.

Литий ионный аккумулятор, подойдет любой стандарт, хоть от мобильного телефона.

В моем же варианте аккумулятор заменен на перезаряжаемые никель-металл-гидридный аккумулятор, батарейки стандарта ААА, взял 3 штуки, потом подключил последовательно, в итоге получил аналог одной банки литий-ионного аккумулятора. Обусловлено такое решение ограниченным пространством в корпусе.

Сам корпус решил сделать компактным, донором послужил дешевый power bank за доллар, позже корпус местами подточил, чтобы начинка влезла.

Нам также нужен мини цифровой вольтметр, в моем случае этот вольтметр измеряет напряжение до 32-х вольт, и не имеет третьего провода (измерительный), т.е. подключается напрямую к источнику питания, в нашем случае к стабилитрону, чтобы измерить напряжение стабилизации последнего.

Нужно помнить, что вольтметр потребляет некоторый ток, поэтому, чтобы не перегружать стабилитрон, желательно использовать вольтметр с тремя проводками - два провода питания и один для измерителя.
Именно мой вольтметр легко переделать под три провода, китайцы просто замкнули плюс питания с измерительным проводом.

Кстати, для работы таких вольтметров нужно напряжение не мене 4-х вольт, для того, чтобы показания были корректными, минимальное напряжение питания должно быть в районе 4,5-5 вольт, максимальное - 32 вольта, поэтому вольтметр питается напрямую с выхода повышающего преобразователя, напряжение аккумулятора недостаточно.

В связи с этим наш прибор может тестировать стабилитроны, напряжение стабилизации которых не более 30 вольт.

Выключатель или кнопка без фиксации, на любой ток, нужна кнопка для включения прибора, тест занимает пару секунд.

Электролитический конденсатор вольт на 50 с емкостью от 10 до 47мкФ, он подключается на выход преобразователя и предназначен для сглаживания пульсаций, это нужно для корректной работы вольтметра.

Резистор 2кОм, нужен для ограничения тока через стабилитрон, иначе последний сгорит. Расчет этого резистора делается исходя из нескольких величин, именно для нашего случая нужен резистор от 2-х до 2,2кОм, мощность 0,25ватт.

Панелька беспаечного монтажа для микросхем в корпусе DIP8, DIP14 или DIP16, особой разницы нет.

В эту панельку ставиться тестируемый стабилитрон.

Итак, модуль повышающего преобразователя на микросхеме MT3608 как уже сказал, может обеспечить максимальное выходное напряжение 28-30В, которое легко можно поднять до 40В.

Смотрим на схему модули этой платки. Видим постоянный резистор подключенный последовательно с подстроечным.

А теперь выпаиваем и на его место ставим перемычку.

Следующим делом подаем на вход платы напряжение около 4-х вольт, имитируя подключенный литиевый аккумулятор, на выход платы подключаем мультиметр, потом и вращаем подстроечный резистор 10 шагов против часовой стрелки.
Должен заметить, что только после 10 шагов модуль начнет повышать напряжение (да, странно, но это не я придумал). Потом смело вращаем подстроечник до напряжение в 35 вольт, после 35 вращаем крайне аккуратно и медленно пока мультиметр не покажет напряжение в 40 Вольт, если повышать дальше, мгновенно растет ток потребления и микросхема сгорит (случится это при напряжении 45-50 Вольт).
Таким образом, наша плата на 30 вольт стала выдавать целых 40вольт, но я крайне не советую так поступать, лучше оставить все как есть.

Дело за малым, собираем все по схеме.

Выключатель был установлен сбоку, панелька и вольтметр были расположены на задней крышке, которая теперь стала лицевой панелью.

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя. Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение. Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение. При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого. Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет. Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра. Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В. Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом. Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке. К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления. Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора. Проверка происходит в режиме измерения постоянного напряжения . Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально. Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном. При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Здравствуйте уважаемые посетители. За сорок лет увлечения радиотехникой скопилась целая куча стабилитронов и отечественных, и импортных, и с маркировкой и без, в связи с этим появилась необходимость в изготовлении приставки для мультиметра для определения целостности и параметров стабилитронов. По крайней мере напряжения стабилизации. На изготовление приставки ушло пару часов, это с травлением платы. За основу взял схемку стабилизатора тока (см. рис. 1)из документации на микросхему LM431, аналог 142ЕН19.

Схема получившейся приставки представлена на рисунке 2. На транзисторе VT1 и микросхеме DA1 142ЕН19 собран стабилизатор тока, при номиналах резисторов, указанных на схеме, ток стабилизации равен примерно семнадцати миллиамперам. В качестве индикатора прохождения тока при измерении с схему включен светодиод. Можно использовать любой светодиод с прямым током не менее 20ма. Для изготовления приставки потребуется сетевая вилка от какой ни будь не нужной китайской хрени(см. фото 1, 2).


Вернее запчасть от нее, показанная на фото 2. Приставка собрана на небольшой печатной платке из стеклотекстолита. Внешний вид платы показан на фото 3 и 4. Конструкция приставки надеюсь тоже понятна. Что бы контактные штыри бывшей сетевой вилки свободно входили в гнезда прибора, припаивают их к платке будучи вставленными в них.

На схеме указано максимально возможное входное напряжение для данных элементов – 35В. Но если при этом напряжении проверять, например стабистор КС107А, то на нем упадет напряжение 0,7В, а 34,3В — I Ur2 упадет на транзисторе VT1. Где I Ur2 – падение напряжения на резисторе R2 = 0,017А 200 = 3,4В. 34,3 – 3,4 = 30,9В – это такое напряжение упадет на транзисторе VT1, отсюда мощность коллектора транзистора составит U I = 30,9В 0,017А? 0,525Вт. Мощность коллектора транзистора КТ503 – 0,35Вт. Так, что замер надо производить очень быстро или заменить транзистор более мощным, или уменьшить напряжение питания приставки, что уменьшит количество марок проверяемых стабилитронов. Ну я думаю вы для себя это решите. Скачать рисунок печатной платы.

Да, ток стабилизации зависит от номинала резистора R2, R2 = 2,5/Iст, где Iст – величина тока стабилизации. До свидания. К.В.Ю.

Еще одно дополнение. С помощью этой приставки можно определять диоды с барьером Шоттки, у которых, как известно маленькое прямое падение напряжения. На снимке показана проверка 1N5819 — с барьером Шоттки. Uпр. = 0,24В. Отлично!