Гараж        02.02.2024   

Управляемый выключатель. Сделай сам

Схема электронного выключателя основана на микросхеме CD4013 , и имеет два устойчивых состояния, ON и OFF. Когда он включен, то и остается включенным, пока вы не нажмёте кнопку выключателя еще раз. Короткое нажатие кнопки SW1, переключает его в другое состояние. Устройство будет полезно для исключения громоздких и ненадёжных клавишных переключателей либо для дистанционного управления разными электроприборами.

Электронное реле - схема принципиальная

Контакты реле могут выдерживать высокое сетевое напряжения переменного тока, а также достаточный постоянный ток, что делает проект подходящим для таких приборов, как вентилятор, свет, телевизор, насос, электродвигатель постоянного тока, да и вообще любой электронный проект требует подобный электронный переключатель. Устройство работает от сети переменного тока напряжением до 250 В и коммутирует нагрузку до 5 A.


Параметры и элементы схемы

  • Питание: 12 вольт
  • D1: индикатор подачи питания
  • D3: индикатор включения реле
  • CN1: вход питания
  • SW1: выключатель

Транзистор Q1 можно заменить на любой похожей структуры с предельным током минимум 100 мА, например КТ815 . Реле можно взять автомобильное, или любое другое на 12 В. Если электронный выключатель требуется собрать в виде отдельной малогабаритной коробочки, имеет смысл питание схемы осуществить от маленького импульсного блока питания, типа зарядки мобильного. Поднять напряжение с 5 до 12 В можно заменой стабилитрона на плате. При необходимости вместо реле ставим мощный полевой транзистор, как это реализовано в

Коридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент - переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения.

Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными , а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали - свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства - триггера. Более подробно о различных триггерах можно почитать в цикле статей « ».

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме - с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C - вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R - вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS - входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

Казалось бы, чего проще, включил питание и прибор, содержащий МК, заработал. Однако на практике бывают случаи, когда обычный механический тумблер для этих целей не годится. Показательные примеры:

  • микропереключатель хорошо вписывается в конструкцию, но он рассчитан на низкий ток коммутации, а устройство потребляет на порядок больше;
  • необходимо осуществить дистанционное включение/выключение питания сигналом логического уровня;
  • тумблер питания сделан в виде сенсорной (квазисенсорной) кнопки;
  • требуется осуществить «триггерное» включение/выключение питания повторным нажатием одной и той же кнопки.

Для таких целей нужны специальные схемные решения, основанные на применении электронных транзисторных ключей (Рис. 6.23, а...м).

Рис. 6.23. Схемы электронного включения питания (начало):

а) SI — это выключатель «с секретом», применяемый для ограничения несанкционированного доступа к компьютеру. Маломощный тумблер открывает/закрывает полевой транзистор VT1, который подаёт питание на устройство, содержащее МК. При входном напряжении выше +5.25 В требуется поставить перед М К дополнительный стабилизатор;

б) включение/выключение питания +4.9 В цифровым сигналом ВКЛ-ВЫКЛ через логический элемент DDI и коммутирующий транзистор VT1

в) маломощная «квазисенсорная» кнопка SB1 триггерно включает/выключает питание +3 В через микросхему DDL Конденсатор C1 снижает «дребезг» контактов. Светодиод HL1 индицирует протекание тока через ключевой транзистор VTL Достоинство схемы — очень низкое собственное потребление тока в выключенном состоянии;

Рис. 6.23. Схемы электронного включения питания (продолжение):

г) подача напряжения +4.8 В маломощной кнопкой SBI (без самовозврата). Источник входного питания +5 В должен иметь защиту по току, чтобы не вышел из строя транзистор VTI при коротком замыкании в нагрузке;

д) включение напряжения +4.6 В по внешнему сигналу £/вх. Предусмотрена гальваническая развязка на оптопаре VU1. Сопротивление резистора RI зависит от амплитуды £/вх;

е) кнопки SBI, SB2 должны быть с самовозвратом, их нажимают по очереди. Начальный ток, проходящий через контакты кнопки SB2, равен полному току нагрузки в цепи +5 В;

ж) схема Л. Койла. Транзистор VTI автоматически открывается в момент соединения вилки ХР1 с розеткой XS1 (за счёт последовательно включённых резисторов R1, R3). Одновременно в основное устройство подаётся звуковой сигнал от аудиоусилителя через элементы С2, R4. Резистор RI допускается не устанавливать при низком активном сопротивлении канала «Audio»;

з) аналогично Рис. 6.23, в, но с ключом на полевом транзисторе VT1. Это позволяет снизить собственное потребление тока как в выключенном, так и во включённом состоянии;

Рис. 6.23. Схемы электронного включения питания (окончание):

и) схема активизации МК на строго фиксированный промежуток времени. При замыкании контактов переключателя S1 конденсатор С5 начинает заряжаться через резистор R2, транзистор VTI открывается, МК включается. Как только напряжение на затворе транзистора VT1 уменьшится до порога отсечки, МК выключается. Для повторного включения надо разомкнуть контакты 57, выдержать небольшую паузу (зависит от R, С5) и затем снова их замкнуть;

к) гальванически изолированное включение/выключение питания +4.9 В при помощи сигналов с СОМ-порта компьютера. Резистор R3 поддерживает закрытое состояние транзистора VT1 при «выключенной» оптопаре VUI;

л) удалённое включение/выключение интегрального стабилизатора напряжения DA 1 (фирма Maxim Integrated Products) через СОМ-порт компьютера. Питание +9 В может быть снижено вплоть до +5.5 В, но при этом надо увеличить сопротивление резистора R2, чтобы напряжение на выводе 1 микросхемы DA I стало больше, чем на выводе 4;

м) стабилизатор напряжения DA1 (фирма Micrel) имеет вход включения питания EN, который управляется ВЫСОКИМ логическим уровнем. Резистор RI нужен, чтобы вывод 1 микросхемы DAI «не висел в воздухе», например, при Z-состоянии КМОП-микросхемы или при расстыковке разъёма.

— это электронное устройство собранное на мощных полевых транзисторах MOSFET, которые являются одним из самых важных коммутирующих элементов в современной бытовой и профессиональной электронной технике. Используется такие переключатели в основном в тех устройствах,где присутствуют большие нагрузки по постоянному току и способны заменить собой сильно-точный коммутационный аппарат с возможностью гашения электрической дуги,так как у таких устройств из за больших токов часто выгорают контактные площадки и они приходят в негодность. Электронный переключатель с использованием MOSFET-транзисторов таким явлениям не подвержен и отлично справляется с работой коммутации нагрузок при больших токах и напряжениях в различных силовых цепях.

Представленная здесь схема имеет возможность с легкостью управлять переключением больших нагрузок по постоянному току, используя при этом низкие значения импульсного напряжения — всего 5 В. Установленные в схеме MOSFET -транзисторы NTP6411 рассчитаны на работу с напряжением в 100V и током 75А,мощность этих электронных компонентов составляет около 200W.Такие параметры силовых транзисторов позволяет эффективно применять этот электронный переключатель в узлах автомобиля вместо штатного реле. Для активации транзисторов устройства используется как обычный выключатель так и импульсный вход,выбор метода ввода осуществляется установкой перемычки из отрезка изолированного провода на соответствующие выводы коннектора.

На практике наиболее эффективен и полезен вход с импульсным напряжением,так как он имеет низкие значения управляющего напряжения. Проектировалась схема для работы с постоянным напряжением 24V, но вполне успешно может быть использована и при других напряжения,при тестировании на 12 вольтах показала себя в работе с лучшей стороны,к тому же установленные MOSFET-NTP6411 могут быть заменены на другие N-канальные полевые транзисторы соответствующих электрических характеристик. Установленный в схеме диод D1 выполняет защитные функции,тем самым предотвращает броски напряжения исходящих от индуктивных нагрузок. Встроенные в плату светодиоды дают возможность визуального наблюдения за состоянием полевых транзисторов,а винтовые терминалы обеспечивают подключение электронного переключателя в разные модули. По завершению сборки MOSFET переключателя он прошел суточный тест обеспечивая работой электромагнитный клапан с напряжением питания 24 вольта и током пол-ампера,при этом полевые транзисторы находились в совершенно холодном состоянии,даже в отсутствии тепло-отводов.В общем схема зарекомендовала себя надежным устройством,способная работать в самых разных областях применения,в том числе и автомобильной электронике вместо реле или работать как управляющие устройство в светодиодном освещении.